LoKlor
x
<

VAVAYAVA

<\
-
>
N
>

S

INININININ/

People’s Daily

Microblog Simulator

- Application of Machine Learning Models to Assist Editors to Evaluate Post Performance -

Anran Wang, Tian Jin, Zhenming Wang

Table of contents

Ol Introduction 03 Methodology O5 Reflections

e What's the problem? e Data Pre-processing e Challenges
e Why important? e Training Models e Future Improvements
02 Dataset 04 Results 06 Reference

Weibo Spider e Model Comparison
e Weibo interface

#
#
#
#
#
#
#
#
#
#
#
#

Ol. Introduction

Z
Research Question: Given a piece of text from People’s Daily /\, ‘z ﬂ j k
Microblog, how Would'ch0|ces of words influence the popularity PEOPLE’'S DAILY
of the post (forwards, likes, comments)?
Expectation: We propose to build a People’s Daily Microblog
Simulator, where users can type in the text they'd like to post as
People’s Daily, and our simulator will automatically evaluate the
performance of the post by predicting the numbers of likes,
comments, and forwards. Benefitting from such simulator, true
People’s Daily editors could accordingly revise their posts before
sending them out. To the most promising, the mechanism could

be further applied to any other bloggers.
m\?\?\?*m
N Y| Y|

02. Dataset: Weibo Spider

https://github.com/dataabc/weiboSpider

P13 = fx
A B c D E F G H I] K L

1 #idid FBIEX L& Eurl REE K url SRR RAAE R0 RHEIR W% #R% Fes
2 |KdsPA3mAt [H—4XK, #Z@HH htip//ww2. X x 2021/5/1 17:05 #i18 weibo. 989 90 198
3 KdshoolD [1R#8 | #8uM/MAABT £ http://f.vide & 2021/5/1 16:46 BRI S 1606 280 173
4 Kdsw72ll7 [#OFMFIMA—FR X http://locall & 2021/5/1 16:18 IS 1191 128 160
5 KdsgROIxH —[XEBRMIMEFIR, #3k E http://f.vide & 2021/5/1 15:41 #BWAS 3526 367 289
6 |Kds0ztD7q = [#REIMFREMS £ http://f.vide & 2021/5/1 15:01 SRS 45528 1774 1542
7 Kdrvrs8n [JESREEEE - #3RSB Sk http//wids K x 2021/5/1 14:47 #4518 weibo. 5448 332 858
8 |KdrMPchOh [#ZEH#I15ZRE)4 £ http://f.vide & 2021/5/1 14:27 FEIBIFS 51993 2192 2305
9 KdrDFOHKe [BAAWLASG ! #5— K x x 2021/5/1 14:04 #iB R4 H: 3100 125 341
10 KdrmobCly [#ERFREZREL £ http://locall & 2021/5/113:21 SIS 6655 417 1086
11 KdrevI3Fh [#5400& 2 dEAIG45 K http://f.vide & 2021/5/1 12:57 FEEBIHAS 2906 248 335

12 KdgXvEvK7 [#RIBEEEEERRE £ http://f.vide & 2021/5/1 12:20 BRI S 11707 1061 1228
13 |KdqlYba35s [#FEFARIRRERK £ x x 2021/5/1 11:47 $EEIIAES 5885 957 502
14 |KdqwabxwH [[E1 ! #B5 R H htp://wwl E x 2021/5/1 11:13 #5418 weibo. 19178 557 528
15 KdqeqoGzh [#I7 /il AR5 X http://f.vide & 2021/5/1 10:29 FEBIMES 98816 5676 5686
16 Kdq608MBy [EZAME - #5—8% £ http://livev 2021/5/1 10:10 il R4 A 6824 198 440
17 Kdq3torBv [#E#HBEHRFHAEAR X http://f.vide & 2021/5/1 10:02 FEEIFAES 5185 567 604

18 KdpTvaQUy [{EXBNiE. BEMhE htp//ww2 X x 2021/5/1 09:39 #i8 weibo. 10561 652 876
19 KdpMz8bnC [#RMZEOAERMA htp//vwwd. x 2021/5/109:21 #i8 weibo.. 35066 2512 2783
20 KdptbENLm [#EEFHE@MLEY X x x 2021/5/1 08:33 FEIMES 5821 2230 1290
21 Kdpkdprl7 = [#ARRBBA—tiBH# X x x 2021/5/1 08:10 #1# weibo. 2446 609 355
22 KdpOxqwdr [{RFI67HL | #B R AJE http://w2s T x 2021/5/1 07:44 #518 weibo.: 11247 654 1559
23 Kdpl1Z3as9 [4X., H—Fah¥. dhup//wk2s X x 2021/5/1 07:26 51§ weibo. 9262 3515 1503
24 KdoZqCMes [#REE 7R EDEIR http://wxl.s x 2021/5/1 07:20 18§ weibo. 44124 703 1744
25 KdoRpzwQE [fRF. #HB#] 58. htp://wwds X x 2021/5/1 07:00 #i# weibo. 6771 3074 1523
26 KdIZdsFGQ [#fR8F. BIR#] i http//wads k x 2021/4/30 23:41 #5418 weibo.. 177148 868 2533

W AION A Faadwr Mol A0 AF LU TR ik 1T b 416 il I AN AN N0 ARIRIAAE D 1ccTn naa 1cna

2
o

03. Methodology

@

Pre-processing Evaluation
Jiaba Linear Regression MAE
Data Normalization Random Forest
Begoef-Werds SVM

TF-IDF (Sparse Matrix) Neural Network

03/ Pre-processing: Regex + Jieba

Before:

(#RBEEZRIRBILTES, WA LLRBPLEHR] 48308, ER—FAXE, —R
BERREZRRBRITAL SWRFTE . IRABWAENREBEREXEIEF RERBE+X
=, EREBER BRERY BE . AEBICMETEFHRREES, BEETFENER
o B TERRAIEIIR

(45 TIRIRSERAGF B4 £EP, B—MERITHA? SR, AFHEREW | HLFFHEL
#iRe AR BRI

(A% ! #2MIEKHBE—BRIRTH] OeE—HaneliEfEds, SEEEEMTE THHE
" OFRAAHZBEEMBEOE ; Q@ "E— BUSXLEENERAF ; DREHBIELTT,
RAMEFTENR ; OMRTHEIBERE, miiSa #A—BENINMERIRTH | | HAIRK
IDMTA ! [HEF95K) RE

[#I75EBANB113E10215#] BOFEELRT, 4A30H 18R Z220, SIA BRI HX HIKE
MREERERFANKRS. BEBHR, RRAA000KA, HAPEKWEREEEE. 8545
 ERENTEFRE, BRIIAFRT, ERZJBARDIA. 7HiE1E0172810E, 11BMR%E
K, 2AEBRIKE, IABEENIREP . S5 B A9 FUIE IR

[E#EE#H #5—&FshE—RAGEL4] 5818, BRFESHTH, @ARBRKEXEHE, &
BREKE), SHREBEBT. RUNSXHX. ABRFIPAR—ERSHEL, aFRIMN—%5HE
Bay | BEHE | | #iEERE R | AR BIROBENR

After:

time: 25.127901315689087
["BEE, 'BE, SKR, W, 'S&, "Wk, 'BBEx', '#k', '48308',
"B, "EEAER', '—R, RBEE, 'BE', SRR, ¥R, R,
®, s, arg, (EBER, ‘8K, B, '@F&L, RKREKR, +to,
&=, "B, &P, &k, WK, 'WR, BB, 2F, WL, "EH',
"R, 'RE, SRR, A&, FE', 'ER', HE, R, ®miE, W
['Hah®, KR, 'Kk, 'EARE', &£&F, ', —#, X, '{IE, 'S
X', 'SohE, B, 'SmE, R, ', "ARB®R', '#MiE, R0

, B, 'R%m, 'R—', B, '#'x, O, "E—', 'HE', B
M, RE, 2R, RE, CEM, CIE, TR, @', A, '
HRE, ‘&%, #H, O, 'Q', 'A—', 'BE, EX', '2@', 'XiE’,
TIE, CWMYGE, '@, 'iRME, '8l w7, (R, M, TR, Eu,
'®', 'H&fT, 'R, CHEE, R, RE', 'H, 2k, "HE—, '®BRE, '9
o, @R, R, VRS, X0, 'tat, EHE, '#, 'k, 'RE')
Iz, '@, 'AK', '11', 'ZE', '102', 'f5', 'E@', 'K%', '4H30H18Ht
ZE2280¢, 'VIF', 'F@', '#p, X', 'H}M, KB, EE', ']/, "BR',
AR, 'RR', "B, '8R', 'AO', '3000R', A&, @K, @, 'E,
'BE', 'B&F, CEE, CER, BN, EE, RER', @K', ‘11, %L,
R, 'S5, A0, '102', 'FOBIDEoi72s', HE', ‘118, RR, 'EK,
"RRTh, EREC, &Sk, #ERC, s, I, CFRE, ANEr, R

['EE', B, '—%', 'SFwE, '—&', 'WH, 'L, 'sE1A', EFEGHT
ARBRBEXE"', '#E', ‘2K, B, 'H®HE', #B8IL', 'BLUNEX', 'R
B®, P, AR, —R, g, e, 'R @AY, 'IM, —%', 'SHE',
BE, &, EE, 'SmE, R, '#, CARBR', ®E, W

2

1

03/ Pre-processing: Data Normalizatio

so00 Log transformation
40000
B 30000
:
20000 25000 1
g [o ike sonoal
70000 ol . : ‘ ,
0 20000 40000 60000 80000 100000
60000 s
. § 15000
g 40000 1 2
30000 A 10000 -
100000 y——— 20000 1
50000 10000 | forward 5000 -
L 20000 40000 60000 80000 100000
5 60000
£
2 40000 0 0
20000
comment
0

[} 20000 40000 60000 80000 100000

03/ Pre-processing: TF-IDF

- Term frequency and inverse document

frequency 12000 -
- Hyperparameter: max_features i
8000 1
6000 -
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer 4000 1 \

2000

vectorizer = CountVectorizer(max_features = 10000)

tf_idf_transformer = TfidfTransformer() O G200 00 SO0 SO S0

tf_idfl = tf_idf_transformer.fit_transform(vectorizer.fit_transform(X_train))
X_train_weight = tf_idfl

tf_idf2 = tf_idf_transformer.transform(vectorizer.transform(X_test))
X_test_weight = tf_idf2

03/ Pre-processing: Sparse Matrix

(0, 53970) 0.15875208796311152
(0, 53636) 0.29413458769821654
(0, 51813) 0.12432949999034688
(0, 51169) 0.1783624739121948
(0, 50346) 0.14116579425427336
g ¥ 7 4 . 4

train data_ set = MyDataSet(train x, train y) fgﬁ 4?23;; 3%23%323223333
train_loader = DataLoader(dataset=train data set, batch size=batchSize, shuffle=T (0, 45608) 0.16023239575168496
(0, 43495) 0.1652704605370866
(0, 42920) 0.13590345321628972

test_data: (0, 40694) 0.21752005098874752
X test weight nn = X test weight nn.astype(float) :0, 37400; 0.14897036813493925
= 0, 35464 0.14084082555747807
y_test 0o = ¥ _test nn.dstype(tloat) : (0, 33895) 0.255827319343482
#test_x = convert_ sparse matrix to_sparse_ tensor(X_test weight nn) (0, 29268) 0.16954746823947583
test_x = torch.from numpy(X test weight nn) (0, 24109) 0.13951621309098325
test_y = torch.from numpy(y_test_nn) (33074, 61474) 0.14671055721583312
(33074, 61453) 0.11350125474984606
= (33074, 58310) 0.3597110268688744
it SaDataser(eet =, resL. ¥) X ; (33074, 58077) 0.13218140037257267
test loader = Dataloader(dataset=test data set, batch size=batchSize, shuffle=True (33074, 47229) 0.17170867343477023
, _ _ _ (33074, 47086) 0.09849741146770362
Your session crashed after using all available RAM. View runtime logs X (33074, 45585) 0.2657150952377177
E (33074, 42955) 0.164011259153423
M S5 comnloted at 19:30 AL (33074, 40761) 0.09668255080219637
(33074, 37200) 0.13945608115326913
(33074, 34250) 0.2670403876216512
H (33074, 33852) 0.13282490302713665
Toa rray -= sparse n 1atrix (33074, 31649) 0.1314318618599812
(33074, 26136) 0.1680540259577002
(33074, 23467) 0.17583596236027654
(33074, 20907) 0.09567491617082742
(33074, 20469) 0.0314662757929653

(33074, 19954) 0.24110037645779683

03/ Model: Linear Regression

train_error = sklearn.metrics.mean_absolute_error(np.exp(y_train.to_numpy()), np.exp(y_train_pred),

multioutput="'raw_values')
print(train_error)

test_error = sklearn.metrics.mean_absolute_error(np.exp(y_train.to_numpy()), np.exp(y_train_pred),

multioutput="'raw_values')
print(test_error)

[12240.8485751 5037.8056129 1173.41195107]
[13317.31412094 5205.49306221 1221.45838774]

new = np.array([' [Tig245 GFIRESTABMEMELIROK] NiF, &, 24%5, TREEA, §5160cm, MERE. 7A14H, IFFE2000THE LR
§17318)II#%, B/\—GHESESEER. 8817HEE, WERATBERZHNIRS, 2EAEBKR! BAl, HMEASLTAFE
HA. ATFR! BRUSGRESERBRAFIRTEREHES - BHRIRE eBHHRIE RE '])

weight = tf_idf_transformer.transform(vectorizer.transform(new))

pred = model.predict(weight)

print(np.exp(pred))

[[191.11886701 871.25871791 826.90838998]]

true: 125 1332 886

« Linear model doesn’t perform well; more complex, non-linear model needed
« Multi-output regression? correlation?

03/ Model: Support Vector Regression

svr = sklearn.svm.SVR(kernel ='rbf',degree = 3, gamma ='auto', coef@ = 0.0, tol = 0.001, C = 1.0,
epsilon = 0.1, shrinking = True, cache_size = 200, verbose = False, max_iter = -1)

svr.fit(X_train_weight, y_train['like'])
y_train_pred@ = svr.predict(X_train_weight)
_test_predd = svr.predict(X_test_weight)

svr.fit(X_train_weight, y_train['forward'])
y_train_predl = svr.predict(X_train_weight)
y_test_predl = svr.predict(X_test_weight)

svr.fit(X_train_weight, y_train['comment'])
y_train_pred2 = svr.predict(X_train_weight)
y_test_pred2 = svr.predict(X_test_weight)

3 models for 3-output regression

Hyperparameter: kernel (rbf / poly / sigmoid); degree

03/ Model: Support Vector Regression

rbf

like 5002.900623
forward 4422.304667
comment 1188.533845
dtype: float64

like 4909. 050937 o The best performanced model
forward 3373.718870 .
comment 1213.058375 o Might solve the problem of
dtype: float64 .

correlation
Pl o Degree not tuned

like 5618.077962
forward 4660.494981
comment 1190.669840
dtype: float64

like 5512.656311
forward 3612.471748
comment 1215.079982
dtype: float64

03/ Model: Random Forests

Number of trees: 150
Trained with different settings:

« max_features =10000
« max_features =100000
o depth of trees =10

o depth of trees = 20

model = RandomForestRegressor(n_estimators=150,max_depth=10, random_state=0)
model.fit(X_train,y_train)

print("training done")

03/ Model: Random Forests

- prediciton
10000 iruth Max_feature = 10000, tree_depth = 20
8000
6000 MAE ON TRAINING SET BEFORE TAKING EXPONENTIAL: [1.12969505 0.73334146 0.76983594]
MAE ON TRAINING SET AFTER TAKING EXPONENTIAL: [11009.02247832 4933.05269566 1168.42722616]
4000

MAE ON TESTING SET BEFORE TAKING EXPONENTIAL: [1.23093057 0.80077331 0.8506217]

A\ MAE ON TESTING SET AFTER TAKING EXPONENTIAL: [11707.99202964 5201.86282374 1196.33314958]
2000
0 2 py 60 80

0

100

- prediciton
12000 truth
oo Max_feature = 10000, tree_depth =10
8000
6000 MAE ON TRAINING SET BEFORE TAKING EXPONENTIAL: [1.28785163 0.82116102 0.86749969]

MAE ON TRAINING SET AFTER TAKING EXPONENTIAL: [11947.64261715 5211.44817453 1258.9984395]

4000 MAE ON TESTING SET BEFORE TAKING EXPONENTIAL: [1.31265706 0.83793342 0.89070597]

2000 M h M&W MAE ON TESTING SET AFTER TAKING EXPONENTIAL: [11893.85688217 5255.43325532 1219.871696561]
0 4 ‘ \ P
0 20 P 8 8

100

03/ Model: Random Forests

- prediciton
12000 truth

10000
8000
6000
4000

2000

Max_feature = 100000, tree_depth =10

MAE ON TESTING SET BEFORE TAKING EXPONENTIAL:
MAE ON TESTING SET AFTER TAKING EXPONENTIAL: [11894.3467885 5250.0399778 1218.54709298]

MAE ON TRAINING SET BEFORE TAKING EXPONENTIAL: [1.27939306 0.81600587 0.86379184]

MAE ON TRAINING SET AFTER TAKING EXPONENTIAL: [11943.25924728 5199.47662184 1257.24292804]

[1.308 0.83518134 0. 88865596]

= Max_feature = 100000, tree_depth = 20

10000 - truth
8000 ~
6000 | MAE ON TRAINING SET BEFORE TAKING EXPONENTIAL: [1.12319289 0.72993204 0. 7665977]

MAE ON TRAINING SET AFTER TAKING EXPONENTIAL: [11004.5874486 4918.86775181 1165.77679719]
4000 - MAE ON TESTING SET BEFORE TAKING EXPONENTIAL: [1.22716085 0.79956614 0.85020987]

MAE ON TESTING SET AFTER TAKING EXPONENTIAL: [11702.07836839 5199.42832755 1195.86436983]
2000

0

03/ Model: Neural Network

Neural Network Structure

import torch

from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt

class Net(torch.nn.Module):
def _ init_ (self, n feature, n_hidden, n_output):
super (Net, self)._ init ()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)

def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x

net = Net(10000, 10, 3)
print(net)
net = net.double()

optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
loss_function = torch.nn.LlLoss()

plt.ion()
plt.show()

Net (
(hidden): Linear(in_features=10000, out_features=10, bias=True)
(predict): Linear(in_features=10, out_features=3, bias=True)

)

from torch.utils.data.dataloader import Dat
from torch.utils.data.dataset import Datas

batchSize = 256
epochNum = 10
inputSlice = 20000

from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset
import torch.utils.data as Data

import torch

class MyDataSet():

def _ init_ (self, inputX, inputY):
super()._ init ()
self.X = inputX
self.Y = inputY
self._len = len(self.X)
pass

def _ getitem (self, idx):
return (self.X[idx], self.Y[idx])

def _ len_ (self):
return self. len

train_data_set = MyDataSet(train x, train_y)
train_loader = DataLoader(dataset=train_data_set, batch_size=batchSize, shuffle=True)

test_data set = MyDataSet(test_x, test_y)
test_loader = DataLoader(dataset=test_data_set, batch_size=batchSize, shuffle=True)

: # neuron:5

batchSize: 256 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!

[12737.46688887 1334.04577996 5574.20811499]
TEST ERROR!!

[12573.91204917 1375.28546174 9504.5288857]

: # neuron:7

batchSize: 256 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!

[12631.66932127 1349.04199398 5548.54195958]
TEST ERROR!!

[12509.48492121 1458.41987516 9586.88086884]

: | # neuron:10

batchSize: 256 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!

TEST ERROR!!
[12307.77097221 1302.55125891 9360.99570437]

neuron:15

batchSize: 256 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!

[12553.71922625 1262.64620268 5450.06649833]
TEST ERROR!!

[12461.96738681 1339.15609752 9433.16608345]

neuron:20

batchSize: 256 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!
[12662.9252431
TEST ERROR!!
[12505.0915534

1352.55885474 5574.63375898]

1414.75197035 9553.57151403]

une #Neuron: 10

Epoch Vs. Like_error ™

neuron:10

batchSize: 512 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!

[12568.35569375 1289.12045663 5485.02483937]
TEST ERROR!!

[12435.42117523 1338.55812754 9433.197557]

neuron:10

batchSize: 256 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!
[12527,43855916 1254,24672193 5437,730171981

8000

6000

4000

2000

14000

12000

10000

8000

6000

4000

2000

TEST ERROR!!
[12307.77097221 1302.55125891 9360.99570437]

neuron:10

batchSize: 128 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!

[12456.39723128 1246.77121704 5418.0303683]
TEST ERROR!!

[12369.86210662 1320.58609568 9394.37296849]

Tune #batchSize: 256

200 200 600 800

1000

200 200 600 800

Dataset=5000

1000

04. Result: Model Comparison

SYR

Correlation

. Random Forest
Linear

Regression

Non Linearity

Neural Network
All Data Input; Non Linearity

Linear Regression: # Input: all

train_error = np.absolute(np.subtract(np.exp(y_train.to_numpy()),np.exp(y_train_pred))).mean(axis=0)
print(train_error)

test_error = np.absolute(np.subtract(np.exp(y_test.to_numpy()),np.exp(y_test_pred))).mean(axis=0)
print(test_error)

[12240.8485751 5@37.8056129 1173.41195107]
[13317.31412094 5205.49306221 1221.45838774]

One-layer NN

Input: all

BatchSize = 256
/ # Neurons = 10

Epoch =20

TRAIN ERROR!!

like 5002.
forward 4422.
comment 1188.
dtype: float64

like 4909.
forward 3373.
comment 1213.
dtype: float64

900623
304667
533845

050937
718870
858375

ndom Forest [11670.063841632777, 5146.812287880117, 1211.3048044133116] };'r‘:ard ﬁgg'ggggg?
all TEST ERROR!! comment 1188.533845
150 [11446.500611296187, 5098.407987872186, 1116.831272920347] :
Tree = like 4909.050937
- forward 3373.718870
Depth 20 comment 1213.0858375
MAE ON TRAINING SET BEFORE TAKING EXPONENTIAL: / dtype: float64
[1.12319289 0.72993204 0.7665977]
MAE ON TRAINING SET AFTER TAKING EXPONENTIAL: SVR 50060data
[11004.5874486 4918.86775181 1165.77679719] _
MAE ON TESTING SET BEFORE TAKING EXPONENTIAL: # |hpUt _“50900 / O”
[1.22716085 0.79956614 0.85020987] Kernel = rbf

MAE ON TESTING SET AFTER TAKING EXPONENTIAL:

[11702.07836839 5199.42832755 1195.86436983] Degree=3

Interface for posting as People’s
Daily on Weibo

+ Integrate a model on server

Challenges

Data crawling
SUPER large dataset
causing SUPER long
training time

High dimensionality
Time Limit
AB Power Failure

O5. Reflections

Future Improvement

Pre-processing:
number of Max_feature
Model: multiple-layer
neural network
Tuning: using full
dataset

Sentiment Analysis of
Comments

https://github.com/dataabc/weiboSpider
https://github.com/fxsjy/jieba

< oK oK
AN

> K

KKK

E

SN TN

Thank youl

2021 Spring Machine Learning

