
Intent Clustering from Conversations for Task-Oriented Dialogue

Tian Jin
NYU Shanghai
tj1059@nyu.edu

Tang Sheng
NYU Shanghai
ts3906@nyu.edu

Penghao Weng
NYU Shanghai
pw1298@nyu.edu

Abstract

A reliable intent clustering algorithm for task-001
oriented dialogues contributes to precise de-002
tection of speakers’ intents, therefore allowing003
more comprehensive applications in different004
domains. Because of the high cost of time and005
expense and the numerous emerging domains006
in need of such application, it is challenging007
to make and generalize progress in this area to008
various tasks and fields. In this paper, given009
an insurance-related customer support dataset,010
we propose a GAT-based Sentence Transformer011
Decoding Model to encode dialogue sentences,012
and introduce a cross-validation fixing mech-013
anism for the purpose of correcting those014
wrongly-clustered utterances after applying the015
K-Means algorithm. The proposed model has016
been verified effective in improving clustering017
accuracy through experiments, and our next018
focus is to evaluate the performance of apply-019
ing cross-validation to the enhanced clustering020
results.021

I Introduction022

Task-oriented dialogue modeling has drawn great023

attention for its widespread use in fields apply-024

ing conversational systems (primarily virtual as-025

sistants), especially in business-related ones with026

great demand for customer service interactions be-027

tween virtual agents and customers. The capability028

of precisely identifying the intent of each interac-029

tion (mostly customers’ requests) therefore has for030

long become the centerpiece and has been widely031

researched in recent years. Considering the great032

cost to obtain well-annotated data for training, pre-033

vious work has gained traction looking at slots or034

dialogue states given conversational logs (Chatter-035

jee and Sengupta, 2020), (Hudecek et al., 2021).036

However, as novel services and domains continue037

to emerge, a lack of shared benchmarks hinders the038

generalization of progress in this area to various039

tasks and fields.040

In this paper, we specifically look at an 041

insurance-related customer support dataset, creat- 042

ing a set of intent labels based on conversations 043

and assigning one to each of the utterances with 044

semantic intent. We first construct a GAT-based 045

Sentence Transformer Decoding Model by imple- 046

menting techniques including Encoder-Decoder ar- 047

chitecture, Graph Attention Network, BERT Gen- 048

eration Decoder Model framework, in order to en- 049

coding the utterances with as much information 050

as possible. Then, for those wrongly-clustered ut- 051

terances, we introduce the cross-validation fixing 052

mechanism for the purpose of enhance the model 053

performance. 054

II Related Work 055

Intent induction has been intensively studied in 056

the past several years. While virtual assistants 057

are introduced in a vast number of fields in the 058

real world, obtaining data of high quality with 059

accurately-assigned labels for model training re- 060

quires a great cost of both time and money. There- 061

fore, one direction of progress in this field points to 062

dealing with low data sources. (Goyal et al., 2018) 063

explores transfer learning to reuse available chat 064

logs instead of introducing new well-developed 065

datasets, yet it fundamentally assumes that the ut- 066

terances are all pre-labeled beforehand and looks at 067

the intersection of deep learning and transfer learn- 068

ing from a supervised learning perspective. Simi- 069

larly, (Chatterjee and Sengupta, 2020) proposes a 070

novel method to create high-quality training data 071

given the carefully reviewed and labeled clusters, 072

regardless of its unsupervised method to mine ut- 073

terance intents in the first round. 074

On the other hand, semi-supervised and unsu- 075

pervised methods are also well investigated for 076

better classify the utterances by their respective 077

intent. (Yang et al., 2014) compute the similarity 078

between dialogue sentences based on vector-space 079

representation and seed the clusters through semi- 080
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supervised approach on manually annotated data,081

while (Lv et al., 2021), specifically in the field082

of task-oriented dialogues, has even proposed Dia-083

logue Task Clustering Network recently in an effort084

to enhance encoding from an unsupervised learning085

aspect.086

III Self-Supervised Approach087

III.1 Baseline088

The baseline of the intent clustering from the con-089

versation for task-oriented dialogue basically con-090

tains two parts: 1) encoding the utterances with in-091

tents from given dialogues using a Sentence Trans-092

former model to a vector representation and then,093

2) clustering the vector representations by built-in094

clustering algorithms from the scikit-learn library.095

To facilitate the performance of the intent clus-096

tering baseline architecture, we need to figure out097

1) how to get better vector representation for each098

utterance for clustering and, 2) how to classify the099

utterances correctly by different algorithms.100

III.2 Encoder-Decoder101

For better vector representations, we introduce an102

Encoder-Decoder architecture to tune the perfor-103

mance of the original sentence transformers. We104

obtain the idea from the Frame of Dialogue Task105

Clustering Network (DTCN) designed by (Lv et al.,106

2021) in paper Task-Oriented Clustering for Dia-107

logues.108

In DTCN, (Lv et al., 2021) attempt to promote109

the vector representation of each utterance by an110

Encoder-Decoder architecture. To gain more in-111

formation through the contexts of each utterance,112

the authors use Graph Attention Networks (GAT)113

(Velickovic et al., 2018) to get an enhanced version114

of the sentence transformers’ output for better ut-115

terance clustering results which later serve for the116

dialogue clustering task.117

From the inspiration of DTCN, we design a GAT-118

based Sentence Transformer Decoding Model to119

fine-tune the representation vectors returned from120

the original sentence transformers. Detailed imple-121

mentation will be discussed in section IV.122

IV GAT-based Sentence Transformer123

Decoding Model124

The GAT-based Sentence Transformer Decoding125

Model mainly contains two components: 1) a sen-126

tence transformer model with a Graph Attention127

Network as the Encoder component and 2) a frame- 128

work of the BERT Generation Decoder Model (De- 129

vlin et al., 2019) as the Decoder component. 130

131

Figure 1: GAT-Based Sentence Transformer Decoding
- 132

To illustrate the details of the model, we take 133

one batch from the training process as an example. 134

This model design is shown using a batch example, 135

which is demonstrated in Figure 1 above. 136

IV.1 Sentence Transformer Raw Hidden 137

States 138

In one particular batch with batch size B, there is 139

an utterance set for each utterance u = {ut}Bt=1. 140

Getting the original vector representation of ui 141

through a sentence transformer model we obtained 142

the output hidden states h with size H where 143

h = {ht}Bt=1. 144

IV.2 GAT-Enhanced Hidden States 145

After getting the raw hidden states h from the sen- 146

tence transformer model, we enhance the hidden 147

state through a Graph Attention Network. In order 148

to implement GAT, we build up an adjacency graph 149

G = (V,E) for the utterances in all dialogues. 150

Each dialogue di ∈ {dt}Kt=1 which contains ni 151

utterances represents as di = {ut}ni
t=1, and each 152

utterance ui serves as an node in the node set: 153

V = {ui}Ni=1

where N =
∑K

i=1 ni. 154

We set up the Edge set E from the adjacency 155

relationship from each utterance. To specify, we 156

define a Window Size W and obtain the edges for 157

each utterance from one specific dialogue in the 158

following equation: 159

eij =


1, |j − i| ≤ W

0, Otherwise

We feed the adjacency graph G along with the 160

sentence transformer output hidden state of the 161
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batch discussed in section IV.1 where h = {ht}Bt=1162

into the Graph Attention Network to obtain the163

enhanced hidden states from the contextual infor-164

mation:165

g = GAT (G, h)

We now have the enhanced hidden state g with166

size H for this batch where g = {gt}Bt=1.167

IV.3 BERT Generation Decoder168

In the Decoder component, we basically utilize169

the framework of the BERT Generation Decoder170

Model from Hugging face, where the hidden size171

and the intermediate size of the model config file172

need to be matched both the hidden size and the173

intermediate size of the state dictionary with the174

first layer module (a BERT model) of the chosen175

sentence transformer. We initiate the decoder em-176

bedding using the state dictionary.177

Then we tokenize the utterances in the batch178

mentioned in section IV.1 by setting the maximum179

sequence length to M in order to save the GPU180

memory for training. Now we have the input ids as181

the decoder input with size (B ×M). In order to182

make cross attention with the corresponding GAT183

output g during the decoding process, we replicate184

each gi ∈ g by M times. We obtain the encoder185

input grep with size (B ×M ×H) so that we can186

feed it into the decoder as the encoder input ids.187

Now we can use this language model to make the188

next-word prediction task where the labels are the189

one token left-shift of the decoder input ids. After190

getting the probability distribution of the next word191

and the ground truth label, we apply cross-entropy192

loss and make the loss backward to better learn the193

contextual representation.194

V Semi-Supervised Approach195

V.1 Idea196

Pure self-supervised learning is limited in down-197

stream tasks in that it lacks some significant infor-198

mation including the ground-truth labels of each199

utterance. As a result, the performance of the self-200

supervised approach is not satisfying enough if201

it is placed in competition with supervised learn-202

ing. However, having experts label every utter-203

ance in one dataset is extremely expensive. A204

semi-supervised strategy can be taken to improve205

the performance of the model on top of the pure206

self-supervised one without an expensive and time-207

consuming labeling process.208

V.2 Architecture 209

This model architecture is designed on top of the
GAT-based encoder-decoder model (see figure1).
One multi-class classifier and one additional train-
ing object are introduced. A hyper-parameter, iden-
tifying probability α, controls the proportion of
intended utterances that will be identified with
ground-truth intents. Other utterances’ intents will
be labeled as unknown and ignored by the classifier.
In other words, (1−α)∗len(intendedutterances)
intended utterances and all the utterances without
intents will be labeled as −100 (to be ignored);
alpha ∗ len(intendedutterances) intended utter-
ances will be labeled with their actual intents. We
feed the utterances into the GAT-based Encoder
and get the GAT-enhanced hidden states of each
utterance gi. As before, we feed gi to the decoder
and get lossdecoderi with a cross-entropy loss func-
tion. Additionally, we feed gi into a classifier head
to get lossclassifieri .

logitsi = Wclassifiergi

Then we take a cross-entropy approach to get
lossclassifieri according to the ground-truth labels
and the identifying probability α.

lossclassifieri =


0, yi = −100

CrossEntropy(logitsi, yi), Otherwise

Combining the two losses we gained with a hyper-
parameter λ to be the coefficient, we get the object
that we want to optimize.

Li = lossclassifieri + λ ∗ lossdecoderi

VI Cross-Validation Fixing 210

VI.1 Idea 211

In each approach that we have discussed above, 212

we essentially get a hidden state gi for each in- 213

tended utterance ui. Then, we use K-Means al- 214

gorithm (Hartigan and Wong, 1979) to cluster all 215

the hidden states in a linear approach. However, 216

the feature of linearity can lead to some problem- 217

atic clustering results as some intended utterances 218

with different intent labels may appear indeed very 219

close to each other in the virtual clustering space. 220

For situations like this, we introduced a Cross- 221

Validation (Wang, 2010) Fixing mechanism to fix 222

some wrongly-clustered intended utterances and 223

assist them to return to the cluster they ought to 224

belong to. 225

3



VI.2 Implementation226

We essentially take the traditional k-fold cross-
validation approach. After the K-Means clustering
process, we will get the predicted label ci (i.e. clus-
tering label) for each intended utterance ui. We
reference ci as the sudo-label we will later use as
the ground-truth label for the classification task.
We set k = 10. The intended utterances will be
randomly split into 10 folds. Each time we define 9
folds as the training set and 1 fold as the testing set.
We use the training set to train a BERT classifier
with their sudo-labels as the ground-truth object.

Li = CrossEntropy(Classifier(ui), ci)

Then we use the trained BERT classifier to predict
labels for the utterances in the testing set. We will
get the logitsi for each tested utterance uj . Then,

ci = argmax(Softmax(logitsi))

Therefore, the sudo-labels for the tested utterances227

will be changed into a new one if the classifier is228

not confident enough with the current one. After229

one round for the k-fold cross-validation is done,230

we will be able to update all the sudo-labels for231

the intended utterances and take the updated sudo-232

labels as the new clustering label.233

VII Detailed Experiments234

VII.1 Query-Response Concatenation235

On top of the raw data set provided by DSTC11,
we extracted more information for every intended
utterance. Here, let’s define an intended utterance
as qi for clarity. For each qi, we search through
the dialogue it belongs to. We get the vector repre-
sentation of each sentence aside from the intended
utterance itself in this dialogue xj , j ̸= i. Then we
get the similarity score between qi and each xj .

cos(t, e) =
te

∥t∥∥e∥
=

∑n
i=1 tiei√∑n

i=1 (ti)
2
√∑n

i=1 (ei)
2

,

Score(i, j) = 100 ∗ (cos(qi, xj) + 1)/2

, After getting all the similarity scores, we choose
the xj that has the best similarity score with qi.

m = argmaxjScore(i, j)

We define ri = xm and concatenate qi and ri to236

get a information-enhanced hidden states of the237

intended utterance ui: hi = qi ⊕ ri.238

VII.2 Model Concatenation 239

In order to gain more information from different 240

outputs of different sentence transformers, we ap- 241

proach making a concatenation of the vectors. We 242

try a two-pair concatenation among six different 243

sentence transformers using the query-response 244

pairs data set and most of the combinations show 245

improvements. Detailed experiment results are 246

shown in Table 1 and Table 2. 247

Model Name (Label)

all-MiniLM-L12-v2 (1)
multi-qa-MiniLM-L6-cos-v1 (2)
paraphrase-MiniLM-L6-v2 (3)

all-MiniLM-L6-v2 (4)
multi-qa-mpnet-base-dot-v1 (5)

paraphrase-multilingual-MiniLM-L12-v2 (6)

Table 1: Model Labels

Label Single F1 Score Best Concat F1 Score

1 60.8 65.3 (with 2)
2 60.5 65.3 (with 1)
3 55.6 62.7 (with 5)
4 58.4 63.4 (with 4)
5 55.1 62.7 (with 3)
6 56.8 62.4 (with 5)

Table 2: Concatenation Trials

VIII Results 248

Overall, we observe a great improvement in apply- 249

ing our proposed approach on the test set. Among 250

all six sentence transformer models, all-MiniLM- 251

L12-v2 and multi-qa-MiniLM-L6-cos-v1 have a 252

greater performance compared to other four, reach- 253

ing F1 Scores of over 60. When experimenting 254

with query-response concatenation and two-pair 255

model concatenation, we achieve great improve- 256

ments in every experiment, in which F1 Score 257

was boosted from 55.1 to 62.7 when concatenat- 258

ing multi-qa-mpnet-base-dot-v1 and paraphrase- 259

MiniLM-L6-v2. The concatenation of all-MiniLM- 260

L12-v2 and multi-qa-MiniLM-L6-cos-v1 achieves 261

the best performance as it hits the F1 Score of 65.3. 262

Although our proposed approaches are still to be ex- 263

perimented, the primary results strongly verify our 264

assumptions and indicate the potentials for future 265
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application.266

IX Conclusion267

This paper proposes a GAT-based Sentence Trans-268

former Decoding Model for dialogue utterances269

encoding, and introduces a cross-validation fixing270

mechanism in the attempt to help correct those271

wrongly-clustered utterances after applying the K-272

Means algorithm. Due to the time limit, we haven’t273

apply the proposed fixing mechanism to our pro-274

posed model. As our experiments at the current275

stage already demonstrate the capability of the276

GAT-based Sentence Transformer Decoding Model277

in improving accuracy of clustering dialogue sen-278

tences by their semantic intents, and our next step is279

to evaluate the effectiveness of cross-validation fix-280

ing mechanism based on the optimal concatenated281

model (in Section VIII).282
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