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Abstract

A reliable intent clustering algorithm for task-
oriented dialogues contributes to precise de-
tection of speakers’ intents, therefore allowing
more comprehensive applications in different
domains. Because of the high cost of time and
expense and the numerous emerging domains
in need of such application, it is challenging
to make and generalize progress in this area to
various tasks and fields. In this paper, given
an insurance-related customer support dataset,
we propose a GAT-based Sentence Transformer
Decoding Model to encode dialogue sentences,
and introduce a cross-validation fixing mech-
anism for the purpose of correcting those
wrongly-clustered utterances after applying the
K-Means algorithm. The proposed model has
been verified effective in improving clustering
accuracy through experiments, and our next
focus is to evaluate the performance of apply-
ing cross-validation to the enhanced clustering
results.

I Introduction

Task-oriented dialogue modeling has drawn great
attention for its widespread use in fields apply-
ing conversational systems (primarily virtual as-
sistants), especially in business-related ones with
great demand for customer service interactions be-
tween virtual agents and customers. The capability
of precisely identifying the intent of each interac-
tion (mostly customers’ requests) therefore has for
long become the centerpiece and has been widely
researched in recent years. Considering the great
cost to obtain well-annotated data for training, pre-
vious work has gained traction looking at slots or
dialogue states given conversational logs (Chatter-
jee and Sengupta, 2020), (Hudecek et al., 2021).
However, as novel services and domains continue
to emerge, a lack of shared benchmarks hinders the
generalization of progress in this area to various
tasks and fields.
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In this paper, we specifically look at an
insurance-related customer support dataset, creat-
ing a set of intent labels based on conversations
and assigning one to each of the utterances with
semantic intent. We first construct a GAT-based
Sentence Transformer Decoding Model by imple-
menting techniques including Encoder-Decoder ar-
chitecture, Graph Attention Network, BERT Gen-
eration Decoder Model framework, in order to en-
coding the utterances with as much information
as possible. Then, for those wrongly-clustered ut-
terances, we introduce the cross-validation fixing
mechanism for the purpose of enhance the model
performance.

I Related Work

Intent induction has been intensively studied in
the past several years. While virtual assistants
are introduced in a vast number of fields in the
real world, obtaining data of high quality with
accurately-assigned labels for model training re-
quires a great cost of both time and money. There-
fore, one direction of progress in this field points to
dealing with low data sources. (Goyal et al., 2018)
explores transfer learning to reuse available chat
logs instead of introducing new well-developed
datasets, yet it fundamentally assumes that the ut-
terances are all pre-labeled beforehand and looks at
the intersection of deep learning and transfer learn-
ing from a supervised learning perspective. Simi-
larly, (Chatterjee and Sengupta, 2020) proposes a
novel method to create high-quality training data
given the carefully reviewed and labeled clusters,
regardless of its unsupervised method to mine ut-
terance intents in the first round.

On the other hand, semi-supervised and unsu-
pervised methods are also well investigated for
better classify the utterances by their respective
intent. (Yang et al., 2014) compute the similarity
between dialogue sentences based on vector-space
representation and seed the clusters through semi-



supervised approach on manually annotated data,
while (Lv et al., 2021), specifically in the field
of task-oriented dialogues, has even proposed Dia-
logue Task Clustering Network recently in an effort
to enhance encoding from an unsupervised learning
aspect.

III  Self-Supervised Approach

III.1 Baseline

The baseline of the intent clustering from the con-
versation for task-oriented dialogue basically con-
tains two parts: 1) encoding the utterances with in-
tents from given dialogues using a Sentence Trans-
former model to a vector representation and then,
2) clustering the vector representations by built-in
clustering algorithms from the scikit-learn library.
To facilitate the performance of the intent clus-
tering baseline architecture, we need to figure out
1) how to get better vector representation for each
utterance for clustering and, 2) how to classify the
utterances correctly by different algorithms.

II1.2 Encoder-Decoder

For better vector representations, we introduce an
Encoder-Decoder architecture to tune the perfor-
mance of the original sentence transformers. We
obtain the idea from the Frame of Dialogue Task
Clustering Network (DTCN) designed by (Lv et al.,
2021) in paper Task-Oriented Clustering for Dia-
logues.

In DTCN, (Lv et al., 2021) attempt to promote
the vector representation of each utterance by an
Encoder-Decoder architecture. To gain more in-
formation through the contexts of each utterance,
the authors use Graph Attention Networks (GAT)
(Velickovic et al., 2018) to get an enhanced version
of the sentence transformers’ output for better ut-
terance clustering results which later serve for the
dialogue clustering task.

From the inspiration of DTCN, we design a GAT-
based Sentence Transformer Decoding Model to
fine-tune the representation vectors returned from
the original sentence transformers. Detailed imple-
mentation will be discussed in section IV.

IV  GAT-based Sentence Transformer
Decoding Model

The GAT-based Sentence Transformer Decoding
Model mainly contains two components: 1) a sen-
tence transformer model with a Graph Attention

Network as the Encoder component and 2) a frame-
work of the BERT Generation Decoder Model (De-
vlin et al., 2019) as the Decoder component.
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Figure 1: GAT-Based Sentence Transformer Decoding

To illustrate the details of the model, we take
one batch from the training process as an example.
This model design is shown using a batch example,
which is demonstrated in Figure 1 above.

IV.1 Sentence Transformer Raw Hidden
States

In one particular batch with batch size B, there is
an utterance set for each utterance u = {u;}5 .
Getting the original vector representation of u;
through a sentence transformer model we obtained
the output hidden states h with size H where

h = {ht}thl‘
IV.2 GAT-Enhanced Hidden States

After getting the raw hidden states & from the sen-
tence transformer model, we enhance the hidden
state through a Graph Attention Network. In order
to implement GAT, we build up an adjacency graph
G = (V, E) for the utterances in all dialogues.
Each dialogue d; € {dt}fil which contains n;
utterances represents as d; = {u;};",, and each
utterance wu; serves as an node in the node set:

V= {Uz}fil

where N = 32K n,.

We set up the Edge set &/ from the adjacency
relationship from each utterance. To specify, we
define a Window Size W and obtain the edges for
each utterance from one specific dialogue in the
following equation:

€ij =
0, Otherwise

We feed the adjacency graph G along with the
sentence transformer output hidden state of the



batch discussed in section IV.1 where h = {ht}f: 1
into the Graph Attention Network to obtain the
enhanced hidden states from the contextual infor-
mation:

g = GAT(G, h)

We now have the enhanced hidden state g with
size H for this batch where g = {g;}2 .

IV.3 BERT Generation Decoder

In the Decoder component, we basically utilize
the framework of the BERT Generation Decoder
Model from Hugging face, where the hidden size
and the intermediate size of the model config file
need to be matched both the hidden size and the
intermediate size of the state dictionary with the
first layer module (a BERT model) of the chosen
sentence transformer. We initiate the decoder em-
bedding using the state dictionary.

Then we tokenize the utterances in the batch
mentioned in section IV.1 by setting the maximum
sequence length to M in order to save the GPU
memory for training. Now we have the input ids as
the decoder input with size (B x M). In order to
make cross attention with the corresponding GAT
output g during the decoding process, we replicate
each g; € g by M times. We obtain the encoder
input gr¢, with size (B x M x H) so that we can
feed it into the decoder as the encoder input ids.

Now we can use this language model to make the
next-word prediction task where the labels are the
one token left-shift of the decoder input ids. After
getting the probability distribution of the next word
and the ground truth label, we apply cross-entropy
loss and make the loss backward to better learn the
contextual representation.

V  Semi-Supervised Approach
V.1 Idea

Pure self-supervised learning is limited in down-
stream tasks in that it lacks some significant infor-
mation including the ground-truth labels of each
utterance. As a result, the performance of the self-
supervised approach is not satisfying enough if
it is placed in competition with supervised learn-
ing. However, having experts label every utter-
ance in one dataset is extremely expensive. A
semi-supervised strategy can be taken to improve
the performance of the model on top of the pure
self-supervised one without an expensive and time-
consuming labeling process.

V.2 Architecture

This model architecture is designed on top of the
GAT-based encoder-decoder model (see figurel).
One multi-class classifier and one additional train-
ing object are introduced. A hyper-parameter, iden-
tifying probability «, controls the proportion of
intended utterances that will be identified with
ground-truth intents. Other utterances’ intents will
be labeled as unknown and ignored by the classifier.
In other words, (1—«)*len(intendedutterances)
intended utterances and all the utterances without
intents will be labeled as —100 (to be ignored);
alpha x len(intendedutterances) intended utter-
ances will be labeled with their actual intents. We
feed the utterances into the GAT-based Encoder
and get the GAT-enhanced hidden states of each
utterance g;. As before, we feed g; to the decoder
and get l0s59°°°%" with a cross-entropy loss func-
tion. Additionally, we feed g; into a classifier head
to get lossfla‘%” er,

logits; = Wclassifiergi

Then we take a cross-entropy approach to get

lossflassﬁ T according to the ground-truth labels

and the identifying probability a.
0,y; = —100

classifier

loss;

CrossEntropy(logits;, y;), Otherwise

Combining the two losses we gained with a hyper-
parameter A to be the coefficient, we get the object
that we want to optimize.

L, = lossflassmer 4+ X\ % lossfemd”

VI Cross-Validation Fixing
VI.1 Idea

In each approach that we have discussed above,
we essentially get a hidden state g; for each in-
tended utterance u;. Then, we use K-Means al-
gorithm (Hartigan and Wong, 1979) to cluster all
the hidden states in a linear approach. However,
the feature of linearity can lead to some problem-
atic clustering results as some intended utterances
with different intent labels may appear indeed very
close to each other in the virtual clustering space.
For situations like this, we introduced a Cross-
Validation (Wang, 2010) Fixing mechanism to fix
some wrongly-clustered intended utterances and
assist them to return to the cluster they ought to
belong to.



VI.2 Implementation

We essentially take the traditional k-fold cross-
validation approach. After the K-Means clustering
process, we will get the predicted label ¢; (i.e. clus-
tering label) for each intended utterance u;. We
reference c¢; as the sudo-label we will later use as
the ground-truth label for the classification task.
We set k = 10. The intended utterances will be
randomly split into 10 folds. Each time we define 9
folds as the training set and 1 fold as the testing set.
We use the training set to train a BERT classifier
with their sudo-labels as the ground-truth object.

L; = CrossEntropy(Classifier(u;), ¢;)

Then we use the trained BERT classifier to predict
labels for the utterances in the testing set. We will
get the logits; for each tested utterance u;. Then,

¢i = argmaz(Softmax(logits;))

Therefore, the sudo-labels for the tested utterances
will be changed into a new one if the classifier is
not confident enough with the current one. After
one round for the k-fold cross-validation is done,
we will be able to update all the sudo-labels for
the intended utterances and take the updated sudo-
labels as the new clustering label.

VII Detailed Experiments

VII.1 Query-Response Concatenation

On top of the raw data set provided by DSTC11,
we extracted more information for every intended
utterance. Here, let’s define an intended utterance
as q; for clarity. For each ¢;, we search through
the dialogue it belongs to. We get the vector repre-
sentation of each sentence aside from the intended
utterance itself in this dialogue x;, j # 7. Then we
get the similarity score between ¢; and each x;.

t o t.e:
cos(t,e) = © i=1 bi%

~tllell ~ VY 82V (e)?

Score(i, j) = 100 * (cos(gi, z;) + 1)/2

, After getting all the similarity scores, we choose
the x; that has the best similarity score with g;.

m = argmax;jScore(i, j)

We define r; = x,,, and concatenate ¢; and r; to
get a information-enhanced hidden states of the
intended utterance u;: h; = q; P r;.

VII.2 Model Concatenation

In order to gain more information from different
outputs of different sentence transformers, we ap-
proach making a concatenation of the vectors. We
try a two-pair concatenation among six different
sentence transformers using the query-response
pairs data set and most of the combinations show
improvements. Detailed experiment results are
shown in Table 1 and Table 2.

H Model Name (Label) H

all-MiniLM-L12-v2 (1)
multi-qa-MiniLM-L6-cos-v1 (2)
paraphrase-MiniLM-L6-v2 (3)
all-MiniLM-L6-v2 (4)
multi-qa-mpnet-base-dot-v1 (5)
paraphrase-multilingual-MiniLM-L12-v2 (6)

Table 1: Model Labels

H Label Single F1 Score Best Concat F1 Score ‘

|

1 60.8 65.3 (with 2)
2 60.5 65.3 (with 1)
3 55.6 62.7 (with 5)
4 58.4 63.4 (with 4)
5 55.1 62.7 (with 3)
6 56.8 62.4 (with 5)

Table 2: Concatenation Trials

VIII Results

Overall, we observe a great improvement in apply-
ing our proposed approach on the test set. Among
all six sentence transformer models, all-MiniLM-
L12-v2 and multi-qa-MiniLM-L6-cos-v1 have a
greater performance compared to other four, reach-
ing F1 Scores of over 60. When experimenting
with query-response concatenation and two-pair
model concatenation, we achieve great improve-
ments in every experiment, in which F1 Score
was boosted from 55.1 to 62.7 when concatenat-
ing multi-qa-mpnet-base-dot-v1l and paraphrase-
MiniLM-L6-v2. The concatenation of all-MiniLM-
L12-v2 and multi-qa-MiniLM-L6-cos-v1 achieves
the best performance as it hits the F1 Score of 65.3.
Although our proposed approaches are still to be ex-
perimented, the primary results strongly verify our
assumptions and indicate the potentials for future



application.

IX Conclusion

This paper proposes a GAT-based Sentence Trans-
former Decoding Model for dialogue utterances
encoding, and introduces a cross-validation fixing
mechanism in the attempt to help correct those
wrongly-clustered utterances after applying the K-
Means algorithm. Due to the time limit, we haven’t
apply the proposed fixing mechanism to our pro-
posed model. As our experiments at the current
stage already demonstrate the capability of the
GAT-based Sentence Transformer Decoding Model
in improving accuracy of clustering dialogue sen-
tences by their semantic intents, and our next step is
to evaluate the effectiveness of cross-validation fix-
ing mechanism based on the optimal concatenated
model (in Section VIII).
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