NYU Shanghai

Machine Learning 2021

People’ s Daily Micro-blog Simulator: Applications of Machine

Learning Models to Assist Editors to Evaluate Post Performance

Anran Wang, Tian Jin, Zhenming Wang

Abstract

Weibo is one of the largest social platform where tens
of millions of users publish and exchange informa-
tion everyday. Among the many official accounts,
People’s Daily is one of the most influential ones.
Therefore, it is worth looking into the text corpus of
People’s Daily’s weibo account and is insightful to
explore the relationship between each blog post and
their popularity on Weibo, under the measurement
of likes, comments and forwards.

We used several machine learning models to ad-
dress our research problem, from linear regression to
neural networks. In general, support vector machine
out perform other models with the smallest testing
error. With the user interface we build for people to
type in the and give simultaneous prediction on the
number of forwards, likes and comments, this inter-
face could actually help the user better adjust the
content to create a more popular post.

1 Introduction

Weibo is one of the biggest Chinese social networks
with more than 200,000,000 Daily Active Users [1].
With over 38,000 official accounts operating, rang-
ing from government departments to media presses,
Weibo gradually becomes a source of information.
Therefore, it’” s a lively digital database for re-
searchers to study the propagation of information on
Chinese Internet.

Among all of the official accounts, People’ s Daily
is quite influential. As the largest newspaper agency
representing the government, People’ s Daily wins
over 100,000,000 followers on Weibo. Each of its
posts gains hundreds or thousands of comments,

likes, forwards, while expressing different kinds of
emotions. In early 2020, news about COVID-19, its
current development and global trends always caught
much attention. This might give us some insights into
how the content of the post might be related to its
popularity.

Our research question is then: given a piece of
weibo blog post, what can we say about its possi-
ble popularity on weibo, in terms of number of likes,
forwards and comments it is going to receive?

Previous works studying weibo posts with machine
learning techniques exists. However, most of them
focused on extracting sentimental information from
the text[B, 4], which is drastically different from our
research. Our study primarily utilizes texts of blog
posts as feature vectors to predict numerical values
including the number of forwards, likes and com-
ments.

2 Dataset

a Data Source

The dataset we used for this study is a collection of
approximately 130,000 posts from the official Weibo
account of People’ s Daily. The publication date of
the posts ranges from Jan. 2012 to Apr. 2021 in our
collection. We build our own data-retrieving scripts
with the help of external web crawler library [weibo
spider], and the process of retrieving and storing all
posts took about three days.

The data extracted from weibo is structured, with
each field of content stored as a column in a .csv file.
This includes weibo id, weibo text, url, publication
date, number of forwards, likes and comments, etc.
Weibo text contains the actual content of each blog

mailto:author1@nyu.edu
mailto:author2@nyu.edu
mailto:author2@nyu.edu

post. Number of forwards, likes and comments are
numerical measurements. For our study, we only fo-
cused on these four columns: weibo text, number of
forwards, likes and comments.

b Data Pre-processing

We performed necessary data pre-processing steps.
Since our dataset comes from weibo, it is in Chi-
nese by default, we have to specifically apply Chinese
Natural Language Processing algorithms. First, we
remove meaningless symbols from the original texts
using regular expression. Secondly, we use a python
library “jieba” to tokenize[ll], separating full sen-
tences into separate words. Lastly, we convert the
outcome of jieba into sentences by concatenating the
word with spaces.

Regular expression: At first, since python li-
brary ”jieba” can tokenize, we directly apply ”jieba”
to convert full sentences into words. However, ”jieba”
tends to combine meaningless symbols, such as "#”,
7 [” with other words, albeit it supports stopword.
Since ”jieba” could not get rid of the stopwords, we
decide to use regular expression so that symbols,
punctuations, interjections will be removed. We ap-
ply a filter ”\w+” to pick all words and numbers
ranging from 0 to 9, and all other characters are dis-
carded.

Tokenization: One major difference between
Chinese and English corpus is that English sentences
are naturally separated by spaces, thus it’s simpler
to convert English corpus to collections of words. In
comparison, Chinese sentences have no boundaries
for words. Here we utilize ”jieba”, which is a pow-
erful Chinese tokenization library. It supports deep
learning framework to separate words with high pre-
cision. By applying ”jieba” on the pre-processed text
we obtained, full sentences are broken down to words.

Word Concatenation: After tokenization, one
single sentence is now a list of separated words. We
concatenate each word within the list again, now
adding a space in between. In this way, the sen-
tences is ready to be transformed into vector repre-
sentations.

Log Transformation: There are three numer-
ical values in our dataset: the number of forwards,

50000

40000

30000

number

20000

10000 .
like

100000

0 20000 40000 60000 80000

Figure 1: likes values before processing

Figure 2: likes values after processing

likes and comments. As we plotted out the distribu-
tion of all data points, we found that it is very skewed
and approximately follows a log-normal distribution,
with about 50% of the data concentrating in the first
bin. Figure 1 shows the original distribution of the
number of likes.

To reduce the skewness of the original data such
that following statistical analysis could be more valid
and applicable, we applies log transformation the
number of forwards, likes and comments. After trans-
formation, the distribution follows approximately a
normal distribution, as is displayed in Figure 2.

3 Methodology

a Feature Extraction

1) TF-IDF
Apparently, if we want to input the text data
into machine learning models, we have to trans-
form text data into feature vectors. In this
study, we choose TF-IDF.
TF-IDF offers a statistical measure that eval-

007 01012388 01055622300 0106609798001066096590
583 0.14756 0.0 0.0 0.0

02 02123116647 02283215316 02211200423 208 .)
583 0.0 0.0 0.0 0.0

TR ek e REREEDE RFESERK R
583 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 3: TF-IDF working example

uates how relevant a word is to a document in
a collection of documents[2]. Each word appear-
ing in a document get a score by multiplying two
separate values, term frequency (tf) and inverse
document frequency (idf). The term frequency
of a word is decided by the number of times it
appear inside one document. The more frequent
the occurrence, the higher the term frequency.
The inverse document frequency is decided by
how common a word is across all documents.
The more common a word is in the documents
set, the closer to zero its idf value is, and vice
versa. The higher the TF-IDF score, the more
relevant that word is in that particular docu-
ment[2].

Figure 3 is an example of TF-IDF value in
our dataset. We implemented TF-IDF using
sklearn CountVectorizer and tfidfTransformer.
CountVectorizer transformed a set of documents
into a matrix of word counts. There is a hyper-
parameter maz_ features that comes along with
CountVectorizer, which controls the number of
words taken into account during the process of
the study. In the end, we converted our pre-
processed text corpus into a collections of vectors
each of size max_ features x1.

A worth mentioning point is that the output

Mean Absolute Error

When evaluating model performances, we choose
mean absolute error (MAE) as the measurement.
Because we are predicting the number of for-
wards, likes and comments on weibo, MAE sig-
nifies the amount away from ground truth value
for each post, which is very straightforward and
gives a clear sense of the model performance. In
the scope of our study, as our original dataset is
very skewed, MAE is less sensitive to outliers. If
using Mean Squared Error (MSE), the outcome

2)

would be much greater and cause confusion when
evaluating the model.

Models

Linear Regression

Linear regression, as the most basic regression
model, is the first model we tried. Here, we
choose mazx_ features = 10000 to be our input, so
that only the top 10000 term frequency words’
TF-IDF will be included. Because the dataset
is too big and it is too time consuming to fit
in more features. At max_features = 10000,
the testing MAE is 5037.8056129 (forward),
12240.8485751 (like), 1173.41195107 (comment).
The bad performance suggests that we might
need more complex, non-linear models. Another
possibility is that the choice of max_features is
too small. In Figure 4, we tune the hyper pa-
rameter maz_ features. When more features are
input into the model, the testing MAE will de-
crease, which suggests room for future improve-
ment.

12000

10000

BoOD

4000

2000

_ 0™

10000 20000 30000 40000 50000 60000 70000

0

Figure 4: Tuning Max_ features with LinearRegres-
sion

Random Forest
In order to introduce non-linear models into
our tool box, we tried random forest. We
tuned two hyper-parameters: max_ features and
maz__depth of sklearn’s implementation of ran-
dom forest.

As maz_features controls the dimension of in-
put vectors, a smaller choice of number of words
to keep when generating the tf-idf vector can

significantly reduce training time. For exam-
ple, running a random forest regressor with 150
estimators and maz_depth of 10 under the set-
ting when max_features = 30000 took us 471
seconds; the same random forest regressor took
971 seconds when maz_ features = 100000.

By tuning maz_depth, decreases in both test-
ing error and training error are seen. Figure 5 is
a plot showing the decrease of both testing and
training error for all of the three target variables.

As a conclusion, an average approximation
of MAE for likes is around 11000; the average
approximation of MAE for forwards is around
5000; the average approximation of MAE for
comments is around 1100.

12000

10000

— training MAE of likes
training MAE of forwards

—— training MAE of comments

—— testing MAE of likes

6000 testing MAE of forwards

—— testing MAE of comments.

Figure 5: Random Forest: mean absolute error for
both testing and training

3) Support Vector Regression

Support vector regression is another nonlinear
model when we introduce the kernel. Because
support vector regression also takes large run-
time, we choose mazx_ features = 10000 to be our
input. One hyper parameter we consider here is
the type of the kernel, either rbf, polynomial or
sigmoid. The testing MAE on the whole data
set gives us the following result.

In comparison, rbf kernel performs the
best for all predictions, with testing MAE .,

[N
2500 [——
mm sigmoid

2000

Figure 6: MAE with different SVR kernel

1904.066555 (forward), 2383.823007 (like) and
957.821764 (comment). With same number of
mazx__features input, SVR performs much bet-
ter than linear regression. One possibility is that
it is due to the collinearity between the our tar-
get variables. As the number of forwards, likes
and comments could be related to each other,
SVR solves collinearity by predicting one target
variable at a time.

Neural Network

In order to solve the problem of not be-
ing able to feed in the whole large dataset,
we also apply Neural Network using PyTorch.
Specifically, we use torch.utils.data.dataset and
torch.utils.data.dataloader to separate the origi-
nal datasets into batches respectively, therefore
making it possible to train the model with the
entire dataset instead of only part of it. The
number of neurons in the input layer is 10,000
corresponding to maz_ features and the output
layer is 3 representing “like” , “forward” and
“comment” .

As for the process of tuning parameters, we
mainly apply the control variates method to tune
the size of each batch and the number of neurons
in the hidden layer. With other variables keep-
ing the same, the best result comes when the
batch size equals 256 (other trials include 64,
128, 512). Similarly, 10 turns out to be the best
choice (from 5 to 35) of the number of neurons
in the hidden layer.

neur

batchSize: 256 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!

(12737.46688887 1334.04577996 5574.20811499]
TEST ERROR!!

(12573.91204917 1375.28546174 9504.5288857

neuron:7

batchSize: 256 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!
(12631.66932127 1349.04199398 5548.54195958]
TEST ERROR!!
(12509.48492121 1458.41987516 9586.88086884]

neuron:10

batchSize: 256 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!
[12527.43855916 1254.24672193 5437.73017198]
TEST ERROR!!
[12307.77097221 1302.55125891 9360.99570437]

neuron:15

batchSize: 256 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!
[12553.71922625 1262.64620268 5450.06649833]
TEST ERROR!!
[12461.96738681 1339.15609752 9433.16608345]

neuron:20

batchSize: 256 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!
[12662.9252431
TEST ERROR!!
[12505.0915534

1352.55885474 5574.63375898)

1414.75197035 9553.57151403]

(a) number of neurons

neuron:10

batchSize: 512 epochNum: 1 inputSlice: 10000
TRAIN ERROR! !

[12568.35569375 1289.12045663 5485.02483937]
TEST ERROR!!

[12435.42117523 1338.55812754 9433.197557]

neuron:10

batchSize: 256 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!

[12527.43855916 1254.24672193 5437.73017198)
TEST ERROR!!

[12307.77097221 1302.55125891 9360.99570437)

neuron:10

batchSize: 128 epochNum: 1 inputSlice: 10000
TRAIN ERROR!!

[12456.39723128 1246.77121704 5418.0303683]
TEST ERROR!!

[12369.86210662 1320.58609568 9394.37296849]

(b) size of batches

Figure 7: Tuning parameters with Neural Network

The best result we get using one-layer Neu-
ral Network comes from the model with 10 neu-
rons in the hidden layer and 256 training data
utilized per iteration. We eventually train the
model for 20 epochs on the entire dataset and get
the MAE of 11446.5 (like), 5098.41 and 1116.83
(comment), which is better than Linear Regres-
sion and Support Vector Regression.

One possible improvement here lies in the
amount of data that we include when tuning the
parameters. Since it costs rather long time to
train the whole dataset especially as we increase
the number of neurons or size of batches, we only
use 10,000 input out of over 100,000 when tun-
ing the parameters. If there’ d be infinite time,
we will use the entire dataset to train the model
for more epochs in order to get a more promising
result.

Results and Discussion

Model Performance

In terms of the same max_features num-
ber, support vector regression outperforms other
models, including one-layer neural network, lin-

ear regression and random forest. However,
due to the limited time, the best performed
model is actually linear regression trained on
max_ features =75000, which gives us testing
MAE 1327.7118411 (forward), 2534.55446626
(like), 213.03970434 (comment). We consider
the reason is that with more max_ features input
in the model, the testing MAE will improve with
a higher rate. This suggests that if we train SVR
on max_ features =75000 or more than 75000, it
will yield the best result.

User Interface

We deployed our linear regression model on
a simple python server, and built a weibo-style
web interface where user can input a new piece
of post. Once user decide to publish their posts,
it will be sent to a pre-trained machine learning
model on the server and predicted value of likes,
comments and forwards get generated, and get
outputted on user’s screen.

Future Improvements

One of the most challenging part of our project
lies in the size of our original dataset. As we
have more than 130,000 input data and each
is converted into a 10,000 max_ features feature
matrix, it vastly influences the run time of all
models and we fail to plug in more features for
the input. If time permit, we could fit every
model with max_features = 100000, anticipat-
ing that the testing MAE would be greatly im-
proved. Also, previously, we're thinking about
implementing sentiment analysis, giving addi-
tional an index for the emotional tendency of
user responses. In this way, we might be able
to also generate the general emotional response
tendency.

References

1]

fxsjy. jieba. https : // github . com/ fxsjy /
jieba. Accessed on 2021-5-15.

https://github.com/fxsjy/jieba
https://github.com/fxsjy/jieba

2]

Bruno Stecanella. What ¢s TF-IDF? https://
monkeylearn . com/blog/what-is-tf-idf/.
Accessed on 2021-5-15. May 2019.

B ZEB BRBAR LA Eikon “EITR
- NLPCC 2012 Ff i1 2o A PF I 4 25 7. In:
(2012), pp. 1-8.

PR T SVM B SO I A B F
5¢7. In: (2011), pp. 1-82.

https://monkeylearn.com/blog/what-is-tf-idf/
https://monkeylearn.com/blog/what-is-tf-idf/

	Introduction
	Dataset
	Data Source
	Data Pre-processing

	Methodology
	a
	Models

	Results and Discussion
	Future Improvements

